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Abstract 
Computer-Integrated Food Manufacturing (CIFM) is part of the digital transformation of food industry 
that has been underway for some time but is now accelerating. While it can include all aspects of food 
manufacturing, including planning and design, operations, manufacturing, and customer engagement, 
this article focuses on computer-aided food engineering (CAFE). CAFE typically involves the building of a 
physics-based virtual model of the product, process, or equipment. Such a model enables understanding 
and quick extraction of design sensitivity for improved optimization, faster time-to-market, and higher-
level innovation. Although CAFE is challenging because of complexity and variability in foods, the changes 
it undergoes during processing, and its multidisciplinary nature, these challenges can be overcome, 
particularly due to the advances in mechanistic understanding and computing resources. Digital tools in 
CIFM, such as CAFE, digital twins, 3-D food printing, Internet of Things, and tools for systems-level 
decision-making, should improve efficiency, ensure food safety and security, and minimize energy usage 
and food waste. Industry-university collaborations, building virtual communities and investing of 
governmental resources can help accelerate CIFM.  

Computer-Integrated Manufacturing 
Computer-integrated manufacturing (CIM) can be broadly defined as the integration of computers in all 
aspects of manufacturing, including product design, production planning, process control, and 
information processing. CIM includes computer-aided manufacturing (CAM), a closely related term that 
typically refers more directly to computer-controlled manufacturing, but these terms are often used 
interchangeably. Still, more closely related terms include computer-aided design (CAD) that primarily 
deals with geometrical aspects of a design, and computer-aided engineering (CAE) that incorporates 
engineering analysis in addition to geometry in CAD. CIM in the food industry, or CIFM, supports all 
functions in a food manufacturing company, thereby enhancing its business opportunities [1]. Thus, by 
some definitions, CIFM includes everything from smart appliances, to monitoring and control, to design, 
to electronic scales, to drawing software. For brevity, CIFM, in this article, is focusing primarily on CAE in 
a food context, or computer-aided food engineering (CAFE[2]), with brief mention of a few broader topics. 

Computer-Integrated Food Manufacturing 
Computer-integrated food manufacturing is part of the digital transformation of the food industry that 
enables us to: 1) uncover invisible insights, 2)  predict the future, 3) optimize design, 4) upskill humans, 5) 
automate, and 6) make information accessible [3]. These activities impact most areas in the food industry, 
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including planning and design, operations, manufacturing, and customer engagement. Additionally, the 
use of digital tools (e.g., AI, blockchain, IoT, digital twin) across the food supply chain will undoubtedly 
play an important role in improving commercial efficiency, ensuring food safety and food security, and 
minimizing energy usage and food waste at a global scale [4, 5]. These expected improvements are part 
of the transition from Industry 4.0 to 5.0 [6]. Significant activity is underway in CIFM [7].  

CAFE, the primary interest of this article as part of CIFM, enables uncovering invisible insights and 
optimization and can be a part of design and manufacturing. Food manufacturing is broadly defined here 
to include farm-to-fork-to-health. It includes the design and control of food products, processes, 
packaging, and equipment for quality and safety. CAFE can involve all these operations and indicators, 
from the molecular scale to that of an entire food plant or a farm (or a collection of plants/farms). Much 
of this article refers to the scale of a food product/process/equipment. CAFE distinguishes itself from the 
older prototype-based manufacturing that relied primarily on building and testing. Benefits of computer 
integration can be reduced making of prototypes (product/process/ equipment), thus minimizing trial-
and-error experimentation, faster time-to-market, easier personalization, higher-level innovation, and 
less energy and resource use (more sustainable). It would be fair to say that the use of CAFE in design and 
manufacturing lags behind other digital tools (as part of CIFM) in use in food industry [3]. 

While automotive, aerospace, and defense sectors have been the largest users of CAE, the food industry 
has seen a small penetration of CAFE. The potential, however, is immense, as it can help the food industry 
innovate faster to produce healthier, more sustainable, and personalized food, as demanded by today’s 
consumers. Such digital tools (as in CAFE) can also find their way into building smart appliances for home 
use [8]. Yet another use of such digital tools is in multidisciplinary training and education [9], as part of 
upskilling humans mentioned earlier.  

Engines of Computer-Aided Food Engineering 
The main ingredient in CAFE (as part of CIFM) is a computer model that is an accurate virtual 
representation of a real product or process. A model can be mechanistic, data-driven, or a combination 
of both. Processes such as heating, drying, baking, puffing, and packaging are examples for which models 
have been developed. A mechanistic model uses geometry, physics, material properties, and processing 
conditions as close as possible to reality, without making the computations unnecessarily complex. 
Simulation of such a model allows one to truly understand the process that in turn provides directionality 
in manufacturing. The downside of this is the complexity in building such a model and the need for 
significant computing resources. In contrast, in data-driven models, the model is built-up from input and 
output data with the product and the process as black box. Data-driven models are advantageous in that 
they do not require the complex mechanistic understanding, so they are easier to build. On the downside, 
they require large amounts of real data, they do not provide the mechanistic insights, they are not as 
transferrable between products and processes (consequence of not being mechanistic), and the 
directionality is also more limited. 

Today, mechanistic models (as opposed to data-driven models, not counting simple correlations) have the 
highest level of maturity, although these models are mostly developed in a research context. Historically, 
models started with analytical solutions for simple physics (as in canning) and moved into complex 
processes (as in microwave drying or high-pressure processing), becoming increasingly sophisticated and 
realistic, leading the way to CAFE possibilities. Being primarily in a research context, the models 
emphasized understanding, distinguishing them from use in industrial product and process design. While 
understanding is also a goal in industry, design sensitivity (providing a direction to optimize in product or 
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process design), their prime objective, typically needs less mechanistic details but more rapid simulation 
to cover many factors and levels. 

A relatively significant number of academic researchers are active in building models of food processes 
and product transformations. To effectively build mechanistic models, we need a framework to describe 
the physical and chemical changes the food is undergoing, an ability to include realistic geometry, and the 
ability to easily predict food physicochemical properties as function of composition, temperature, and 
other factors. There have been significant advances in all these fronts—several matured physics-based 
frameworks exist [10-12] that are readily usable, of which the porous media-based framework has been 
the most versatile. Realistic geometries at multiple scales can be captured and imported for model 
building [13]. Properties can be predicted with reasonable accuracy from existing prediction formulas [14] 
or predicted from complementary simulations (the same product/process but at different spatial or time 
scales) [15-17]. Combining the geometry, physics, and properties, a virtual model of the process is 
developed, typically on a commercial software, that facilitates ready inclusion of needed food physics. 
The model is then simulated for ranges of product and process parameters to obtain mechanistic 
understanding (uncover invisible insights) and directionality toward optimum design (optimize). 

Bottlenecks and Workarounds in Computer-Aided Food Engineering 
In the CAFE arena of CIFM, unique challenges exist as compared to non-food manufacturing. Foods are 
too numerous, they are structurally and compositionally complex and highly variable, they undergo 
drastic changes during processing, their physics-based understanding is less developed due to their 
multidisciplinary nature, and they have poorly understood relationships between sensory qualities and 
physical and chemical characteristics. 

Complexity of foods 
Foods are structurally and compositionally complex with tremendous natural variability. Their physical, 
chemical, biological, and sensory properties are hard to predict. Still, for the purposes of CAFE, simple 
models can estimate some of the material properties from composition with reasonable accuracy. 
Depending on the application, their structure can be acquired at multiple levels of detail. Imaging 
techniques [13] can provide details all the way down to nanometer scale, if needed. For many applications, 
homogenized (averaged) properties are good enough. Thus, the porous media-based models[11, 18], that 
ignore the detailed structure but use averages over a small region, while still providing local variations, 
have been successful for CAFE. 

Drastic changes in foods during processing 
When processed, foods go through drastic changes (think of flour-to-dough-to-bread) that are not entirely 
mechanistically understood. The final quality is not just a function of local temperature, moisture, and 
other quantities, but possibly their histories during processing. Many reactions happen during processing 
and storage (and they matter in predicting the final sensory attributes of the food) but their rate constants 
needed for CAFE often have not been identified. However, a combination of mechanistic approaches to 
describe some of the changes (e.g., how moisture is lost during a French fry process) with semi-empirical 
or empirical information for the hard-to-describe ones (e.g., how moisture loss relates to crispness) can 
get us around this.  

Food physics is as varied as foods 
Foods are numerous. When pursuing CAFE, a food process simulation within a realistic timeframe (so it 
does not become a research project) requires software-implementable mechanistic frameworks that 
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describe changes in the food for entire classes of processes (e.g., drying and baking belong to the same 
class). The framework then can be customized easily for a specific product or process within that class by 
using minor parameter changes. Physics-based frameworks [10, 18, 19] that have been under 
development have reached a level of maturity and are now readily implementable in available commercial 
software, thereby making CAFE a realistic option. These frameworks treat the food product 
transformation in somewhat equivalent ways and the user can choose between them depending on the 
level of comfort with the underlying physics. 

Multidisciplinary and multiphysics background is necessary 
Food processes often involve multiphysics; for example, a drying process involves heat transfer, water 
transport, together with the complex solid mechanics of shrinkage. Of course, food processing already 
combines food science with engineering. To effectively work with such processes in CAFE, a highly 
interdisciplinary background is needed that is hard to find in typical educational programs. Thus, there is 
a strong need for capacity development. While more specialized educational programs may be coming 
[20], a  more sustainable approach through dedicated short courses [21] and their web-based delivery 
[22] can bridge the gap for now. Even modest resources made available for such activities can speed-up 
this process. Collaborative community resources are also being built that will accelerate the CAFE 
adoption. This includes building of computational modules that are reusable, databases (compositional, 
property, and safety), websites, and networks(e.g., [23]). 

The Road Ahead: CIFM in the Horizon 
Product, process, and equipment design will be the primary application of CAFE within CIFM. Increasingly, 
larger food companies have dedicated modeling and simulation groups, as is the case in other industries. 
As the overall market for CAE is expected to double by 2028, the food sector can potentially benefit from 
this wave. The CIFM tools can enable the food industry to meet its continuing need to diversify more, use 
more novel processing techniques, such as high pressure and cold plasma, emphasize personalization, 
reduce the cost of food safety, increase emphasis on quality, and reduce time-to-market. 

Several trends on the horizon are likely to become part of CIFM or influence it in a significant way. A few 
examples might be the following. 

Greater integration of CAFE with more accessible computing 
The significant demand for computing, when the underlying models are physics-based, is constantly being 
addressed with improved computational capabilities that bring them closer to food-specific needs (e.g., 
[24]). An approach that holds great potential is to build reduced-order and surrogate models from the 
simulation results of the more detailed physics but are orders of magnitude faster [25]. These surrogate 
models can be conveniently used for problems requiring many simulations such as optimization studies 
or Monte Carlo simulations. Newer computing methods [26] also can greatly reduce the computing time 
for typical food process-related applications. The computing advances are translating into increased use 
of CAFE in manufacturing (e.g., [27]) and this trend is accelerating. 

Data-driven models, an alternate approach that bypasses physics-based models is also gaining ground in 
food [28, 29] and shows great potential as the method is flexible while it is also inherently simple, 
demanding less formal training from the model builder in physics and computation. 

Digital twins 
A digital twin is a virtual representation of the food product or process that spans its lifecycle, is updated 
from real-time data, and uses simulation, machine learning, and reasoning to help decision-making [30-
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32]. Digital twins have attracted significant interest due to the increasing availability, diversity, and 
accessibility of sensors, data, cloud-based infrastructure, and computing algorithms. As part of CIFM, 
digital twins potentially can improve the quality and safety of food production, storage, and 
transportation [32, 33].  

3-D food printing 
In this approach, the food is printed layer by layer, opening the possibility to personalize food in terms of 
its quality attributes like shape, color, and texture, but also its health attributes such as vitamins. 
Significant activities are currently underway in this area [34]. Personalized nutrition is being touted as the 
next frontier and 3-D food printing is likely to play a very significant role[35] in CIFM.  

Internet of Things 
The Internet of Things (IoT) provides connectivity between objects using internet protocols. These objects 
can be a variety and multitude of different sensors and devices where the internet connection between 
them provides a means to use them more intelligently. A massive connection of things through IoT could 
mean that the processes and events can be anticipated in a more versatile way, leading to cost reduction, 
improved uniformity and quality, minimized use of resources (energy, water, land), reduction of losses 
and waste, and increased consumer confidence. IoT has made it possible to implement precision 
technology, automation, and robotics more efficiently and effectively in agri-food applications, ranging 
from integrating crop health, satellites, drones and climate data for better pest, energy and water 
management in agriculture, to livestock monitoring for preventive disease and yield management [36]. 
Critical supply-chain wide applications of IoT are related to tracking and tracing, helping to ensure 
consumer trust and public health[37]. IoT is expected to be a significant part of CIFM [38]. 

 

Artificial Intelligence (AI) 
Among decision-making tools, an increasing role is being played by Artificial Intelligence (AI). The 
application of AI in the food industry has been gaining momentum in recent years in food sorting, 
classification, prediction of the parameters, food safety, and quality control. Different data modeling 
approaches are being used in the food industry, including expert systems, fuzzy logic, artificial neural 
network (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and machine learning [39]. For example, 
machine learning techniques (ML) have reduced the sensory evaluation cost, enhanced business 
strategies, and provided reliable support in decision making. Such approaches methods are often used in 
combination with sensors to enhance results. 

Decision-making tools at larger scales: efficiency and sustainability 
CAFE, as described above, will be used for decision making (e.g., directionality for optimization) at the 
individual product or process scale, while multiple scales are possible [40]. At the industry or even larger 
scale, CIFM can include integration of the entire supply chain from growing to distribution and storage, 
together with packaging and waste management [41]; it is essential to the circular economy. Large 
amounts of data are available, and their integration will provide a boost in business, reduction of 
expenses, and better predictability. At a still larger scale, a sustainable agri-food sector that reduces its 
contribution to global warming poses a great challenge due to factors that include its multiscale, multi-
disciplinary, and uncertain nature[42]. Models integrating these factors can provide decision-making tools 
for such complex systems, the computational frameworks for which are underway [43]. Such frameworks 
will embed the CAFE framework for transformation from raw material to final product, as discussed 
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earlier. Additional resources [44] in building decision making tools at the systems level should expedite 
their development.  

Concluding Remarks 
Computer-integrated food manufacturing is a broad field and only a part of it has been touched upon in 
this contribution. With the technological development of hardware and ICT infrastructure, many aspects 
in food production and processing are being automated or simplified by using computational tools beyond 
the food processing itself, including logistics, sorting, storage and packaging, workforce management, 
supply chain coordination, and management of resources. We expect that CAFE will eventually have to fit 
into larger CIFM frameworks that link all these aspects together to run a factory using advanced digital 
tools.   

Disclaimer 
The views expressed in this manuscript are those of the authors and do not necessarily reflect the position 
or policy of PepsiCo, Inc. 

Dedication 

We dedicate this article to the memory of Professor Ricardo Simpson, Universidad Técnica Federico Santa 
María, Valparaíso, Chile. He was our friend and a passionate food engineer who has greatly contributed 
to computer-aided food manufacturing. 
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Figure 1. An approximate visual representation of how various terms related to computer-integrated food 
manufacturing relate to each other. The boundary of each domain is somewhat arbitrary with significant 
overlap between them.  
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