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ABSTRACT 

The rapid and accurate detection of microbial contamination is critical for ensuring food 

safety, preventing foodborne illness outbreaks, reducing economic losses, and minimizing food 

waste caused by spoilage. Traditional methods, such as culture-based assays and molecular 

techniques, are often labor-intensive and require days to detect trace-level microbial 

contamination. Recent advancements in artificial intelligence (AI) offer promising alternatives, 

providing faster, more accurate and potentially sensitive microbial detection solutions. This 

bulletin explores the challenges of current microbial detection techniques, the potential of AI 

technologies to improve microbial detection, and future directions for the integration of AI-

based approaches into food systems. 

1. INTRODUCTION 

Microbial contamination in food systems is a global concern, contributing to foodborne 

illness outbreaks, food spoilage, and significant economic losses. The World Health 

Organization (WHO) estimates that contaminated food causes 600 million illnesses and 

420,000 deaths annually worldwide (WHO, 2024). In addition to these health risks, global 

estimates suggest that around 40% of the food is not consumed due to pre-harvest loss or 

postharvest food waste, which amounts to approximately 931 million tons annually (Snyder & 

Worobo, 2018; UNEP, 2021). Among these losses, microbial food spoilage is a major factor, 

with around 25% of marketable yields lost during postharvest across a wide range of food 

products (Alegbeleye et al., 2022; Palumbo et al., 2022; Snyder & Worobo, 2018; Zhao et al., 
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2022). As millions of people worldwide suffer from inadequate nutrition, the loss of edible 

food due to microbial contamination further limits access to safe and nutritious food, especially 

in regions with high levels of food insecurity (Quintieri et al., 2023). Moreover, food 

production requires significant natural resources, including water, land, and energy. This food 

waste associated with microbial contamination also contributes to unnecessary environmental 

strain and resource depletion (Kohli et al., 2024). Thus, the detection of bacterial and yeast 

contamination in food systems requires effective and timely detection methods to mitigate 

these risks. However, traditional detection methods, such as culture-based techniques and 

nucleic acid assays, are often slow and labor-intensive, taking several days to yield results, 

especially when target microorganisms are present at low contamination levels. Rapid and 

accurate microbial detection is essential to prevent contamination and safeguard public health 

and food quality. 

In this bulletin, we explore the potential of AI technologies to enhance microbial detection 

in terms of speed, cost, and accuracy. By reviewing recent studies, we highlight the challenges 

and limitations of traditional microbial detection methods. Furthermore, we discuss how AI 

can bridge these gaps through advancements in deep learning and image analysis, offering 

faster, more precise, and cost-effective detection methods to improve food safety and reduce 

food spoilage. 

2. THE CHALLENGES OF BACTERIAL AND YEAST DETECTION IN FOOD 

SYSTEMS 

2.1. Bacterial detection 

Bacterial contamination is a leading cause of foodborne illness globally. Pathogens such 

as Salmonella, Shiga-like toxin–producing Escherichia coli, and Listeria monocytogenes are 

frequently associated with contaminated food products, leading to major outbreaks that affect 

public health and food industries (Qiu et al., 2021). Contaminated food products often reach 

consumers before pathogens can be detected, resulting in costly recalls and liability issues for 

manufacturers (Aladhadh, 2023). Culture-based methods have been the “gold standard” 

approach for detecting bacterial pathogens in food systems (Ferone et al., 2020). The culture-

based approach includes multiple steps of sample preparation, incubation times, and analyses. 

These steps typically include pre-enrichment, selective enrichment, selective and differential 
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plating, serological confirmation, and biochemical screening (Ferone et al., 2020). The culture-

based detection approaches are time-consuming and labor-intensive and can require more than 

3 days to obtain a result. These assays include multiple steps, including the preparation of 

culture media, inoculation into plates, and colony screening. In addition, low sensitivity due to 

the diversity of microorganisms in the specimens is another limitation of this method.  

Complementary to culture-based detection, nucleic acid amplification such as real-time 

polymerase chain reaction (RT-PCR), loop-mediated isothermal amplification (LAMP), and 

sequencing technologies such as whole genome sequencing (WGS) have emerged as leading 

alternative approaches for detecting bacterial pathogens in diverse food systems (Ferone et al., 

2020; Gieroń et al., 2023; Panwar et al., 2023). For these methods, bacterial nucleic acids are 

recovered after initial enrichment or from colonies formed on culture plates, both of which 

require time for microbial growth and preparation before detection can proceed (Ferone et al., 

2020). Though highly sensitive, these methods are susceptible to interference from food 

residues in enrichment cultures and external nucleic acid contamination from the experimental 

environment, such as airborne contaminants (Rajapaksha et al., 2019). In addition, most of 

these solutions are generally more costly and labor-intensive than culture-based methods, as 

these approaches require molecular-grade environment and reagents to isolate nucleic acids 

from bacteria followed by non-isothermal or isothermal amplification of nucleic acids using 

specific primers, enzymes, and fluorescence/colorimetric probes (Ferone et al., 2020). 

Furthermore, the positive results from nucleic acids-based approaches are not necessarily 

related to the presence of live bacterial cells because the positive signals could also be from the 

dead bacterial cells or viable but not culturable cells (Rajapaksha et al., 2019). Thus, a 

combination of nucleic acid-based and culture-based tests are commonly used in food 

industries to confirm the presence of live and culturable bacterial pathogens. Overall, there is 

a significant unmet need to reduce detection time and improve specificity to detect these target 

bacteria in food systems, potentially at the point of detection in processing facilities and 

QA/QC labs with limited molecular capabilities. 

2.2. Yeast detection 

Yeast contamination of food products, while less harmful than bacterial pathogens, can 

lead to significant spoilage issues. Common spoilage yeasts, such as Rhodotorula, Candida, 

and Geotrichum, thrive in diverse food matrices, from dairy products to fruit juices and 
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fermented foods (Fleet, 2011). Certain yeast species, such as Candida, can also serve as 

opportunistic pathogens in humans, causing infections (Fleet, 2011). Spoilage yeasts reduce 

the shelf life of food and beverage products by causing off-flavors, texture degradation, and 

gas production. Traditional plating assays have been used to enumerate the total yeast and mold 

count. This culture-based detection method takes 2-3 days (Green & Moehle, 1999) and only 

provides total yeast and mold counts without detailed classification of the yeast species. This 

lack of classification fails to provide information on the degree of spoilage risk, as different 

yeasts exhibit varying characteristics, resistance to environmental factors, and metabolic 

activities. To further classify yeast species, cultivation and biochemical methods are required. 

This process takes 5-7 days as it involves the enrichment and isolation of yeasts on various 

types of growth media to inhibit interference from background microflora (Ferone et al., 2020; 

Tubia et al., 2018). 

To address the above-mentioned limitations of currently used detection methods, nucleic 

acid-based methods such as PCR and DNA sequencing have similar challenges as discussed 

above for the detection of bacteria (Aboutalebian et al., 2022; Hutzler et al., 2012; Lai et al., 

2022). Additionally, matrix-assisted laser desorption ionization-time of flight mass 

spectrometry (MALDI-TOF MS) has been used to detect yeast species in various sectors, 

including the wine industry, where it has been used to identify yeast strains for different wine 

varietals (Usbeck et al., 2014; Zhang et al., 2020). Nevertheless, these methods still require 

specialized personnel and sophisticated equipment and generally need 2-3 days for the 

enrichment and/or isolation of yeast colonies. During this time, the contaminated products may 

already be on the market. This delay, combined with the high costs and resource demands, 

makes these techniques less practical for routine use in the food industry. Therefore, there is a 

need for fast, cost-effective, and accurate detection of yeast for routine spoilage yeast 

monitoring and spoilage control. 

3. AI IN MICROBIAL DETECTION: TECHNOLOGIES AND OPPORTUNITIES 

Recent advancements in AI have shown significant potential in improving detection and 

classification processes across various industries, including healthcare and agriculture (Esteva 

et al., 2019; Patrício & Rieder, 2018). Deep learning models, particularly those applied to image 

analysis, have evolved to process large datasets and detect objects with increasing precision. 

These models automatically extract features from images and thus reduce the need for manual 
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intervention. This technology is now being translated and further developed to improve 

microbial detection in food systems. 

Traditional image analysis methods, such as thresholding, edge detection, and classical 

machine vision techniques, have been widely used for microbial detection by identifying 

objects such as microbial colonies based on shape, color, or size (Bär et al., 2020; Chiang et 

al., 2015; Choudhry, 2016). However, these methods rely on predefined rules and manually 

selected features, which are effective for detecting the presence of microbial colonies but lack 

the capability to classify different microbial species. When relatively complex optical 

properties such as optical scattering properties of colonies were used, this approach could 

enable the detection of Listeria monocytogenes and other species of Listeria (Banada et al., 

2007). However, this approach could not be generalized for diverse bacterial species because 

the basic morphological characteristics calculated by traditional image analysis methods could 

not distinguish between microbial colonies with similar appearances. In contrast, AI-based 

microbial detection leverages deep learning models, particularly convolutional neural 

networks, to computationally analyze microbial images and automatically extract complex 

patterns beyond simple morphology (i.e., shape, color, or size). Unlike traditional methods that 

depend on manually set parameters, AI models learn directly from raw image data, enabling 

them to recognize species-specific features such as subtle variations in individual cell size and 

shape or microcolony growth patterns (Park et al., 2025). This data-driven approach allows AI 

models to classify microbial species with high accuracy, even when visual differences are 

minimal. Additionally, AI-based methods can process and integrate multimodal data, such as 

combining microscopy images with hyperspectral or fluorescence signals, enhancing the 

species classification of AI models. 

AI-based microbial detection also offers several key advantages over conventional 

microbial detection methods. First, AI models can process large datasets rapidly, enabling near 

real-time microbial analysis compared to traditional culture-based methods, which require days 

for microbial identification. Second, AI techniques can be integrated with multiple imaging 

and spectral methods to enhance sensitivity and specificity while eliminating the need for 

extensive sample preparation. Additionally, some of the AI-based microbial detection methods 

are cost-effective because they do not require sophisticated instruments for microbial 

identification. These approaches can reduce the dependency on specialized expertise and 

lowers the overall cost of implementation, making AI-based microbial detection a scalable and 
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accessible solution for food safety monitoring. Thus, AI can serve as an early screening tool, 

identifying potential microbial contamination at an initial stage, which can then be combined 

with molecular methods for further discrimination of species and serotypes and validation of 

the results. The general architecture of several AI-based microbial detection approaches 

follows these key steps:  

1) Data acquisition: Images or spectroscopy data of microbial samples are captured using 

techniques such as brightfield microscopy, fluorescence microscopy, hyperspectral 

imaging, and spectroscopy methods to collect detailed microbial data. 

2) Feature extraction and model training: Various AI algorithms, primarily convolutional 

neural networks, are employed to extract important features such as cell shape, size, 

and spectral patterns from raw data (Table 1). During training, a validation dataset is 

used for fine-tuning the hyperparameters of the AI model to improve the prediction 

accuracy. 

3) Model validation: Once training is complete, the model is validated on unseen datasets 

to evaluate its accuracy and generalizability. This step ensures that the model performs 

well in real-world microbial detection scenarios before being deployed. 

Based on this framework, some recent studies have explored the potential of AI and 

imaging techniques to improve microbial detection in food systems (Chen et al., 2024; Huang 

et al., 2023; Kang et al., 2024; Kim et al., 2021; Ma et al., 2023; Shankarnarayan & Charlebois, 

2024; Yi et al., 2023). By integrating AI with spectral and optical-based images, these studies 

demonstrate how AI can be leveraged to address the current challenges in microbial detection 

(Table 1). For instance, Kang et al. (2024) developed a 3D convolutional neural network model 

to classify different pathogenic bacteria using hyperspectral microscopic imaging (Fig. 1). 

Similarly, Chen et al. (2024) used deep convolutional neural networks to classify six common 

foodborne pathogens, including E. coli and Salmonella, from microscopic images of bacteria 

on slides stained with a Gram stain. Their model achieves 90-100% accuracy, offering an 

automated alternative to traditional manual microscopy, reducing misjudgment, and improving 

detection speed and accuracy (Fig. 2). In another study, Kim et al. (2021) used a support vector 

machine to classify bacterial species by analyzing bacterial aggregation patterns on paper 

microfluidic chips, with a smartphone capturing the data. The machine learning model was able 
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to classify five bacterial species, including Salmonella and Pseudomonas aeruginosa, with 

over 93% accuracy in less than 10 minutes. Ma et al. (2023) employed a You Only Look Once 

version 4 (YOLOv4) model to detect bacterial microcolonies after just 3 hours of cultivation. 

The model achieved an average precision of 94%, demonstrating the potential to accelerate 

bacterial detection without a sophisticated instrument (Fig. 3). Especially, this study used non-

selective nutritious media to support the cultivation and detection of multiple bacterial genus 

and species. The use of non-selective culture media combined with AI can overcome the 

limitations of selective culture media in two ways. First, non-selective culture media offer a 

more universal method for detecting multiple bacterial species in a single analysis, eliminating 

the need for multiple selective culture assays. Second, traditional culture-based methods rely 

on observing colony characteristics (e.g., color and shape) on selective agar, but closely related 

microbial strains may grow on the same media, reducing the ability to differentiate between 

target pathogens and non-target microorganisms (Nigro & Steward, 2015). In contrast, this AI-

based method can differentiate closely related microbial species with high accuracy. Yi et al. 

(2023) recently developed an AI-biosensing framework that utilizes phage-induced lysis to 

precisely detect E. coli in the presence of non-target bacteria from field-collected water samples 

within 5.5 h (Fig. 4). While many AI-based models have been developed for bacterial detection 

and classification, fewer studies have leveraged AI techniques to detect yeasts (Park et al., 

2025). Huang et al., (2023) applied fuzzy automatic contrast enhancement and the YOLOv5 

framework to detect Saccharomyces cerevisiae cells from microscopic images. Additionally, 

Shankarnarayan & Charlebois (2024) developed a model based on Inception V3 to discriminate 

between four Candida species using cells prepared on glass slides. These studies demonstrated 

the potential of AI technologies in enhancing microbial detection accuracy (70-100%) and 

speed (< 5.5 h). However, the sensitivity of AI-based microbial detection in food products 

remains an ongoing challenge, as only a few studies have reported detailed sensitivity data for 

their deep learning models (Table 1). By integrating deep learning models and innovative 

frameworks, AI approaches can significantly reduce detection times and offer reliable and 

automated alternatives to traditional methods. 

4.  CHALLENGES AND FUTURE DIRECTION IN AI-BASED MICROBIAL 

DETECTION 

Despite the significant potential of AI in microbial detection, several challenges must be 

addressed for widespread adoption for real-world deployment. One of the main challenges is 
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data quality and availability, as AI models rely on large, high-quality datasets for effective 

training (Liang et al., 2022; Savadjiev et al., 2019). Acquiring such datasets remains a critical 

limitation because it requires consistent data collection methods and extensive wet lab results. 

To address these limitations, generative adversarial networks and diffusion models offer 

potential by generating synthetic datasets to supplement training on microbes with limited 

available data (Karras et al., 2020; Liu et al., 2020). Additionally, using pre-trained models 

developed from microbial image datasets rather than general datasets like COCO, can improve 

detection efficiency. These pre-trained models may improve the training efficiency to detect 

unique morphological or spectral characteristics of target microbes with significantly reduced 

labeled datasets. Secondly, training machine learning models requires substantial 

computational resources to process large datasets and optimize algorithms. While end-users or 

consumers typically do not need high computing power, developers face significant challenges 

in training deep learning models. To address this challenge, cloud-based and edge computing 

solutions can help developers overcome the heavy computational demands (Deng et al., 2020). 

In addition, cybersecurity is an important future consideration as AI-enabled systems expand 

in food safety monitoring. As these technologies continue to develop, ensuring secure data 

transmission and protecting AI models from potential tampering will be crucial to maintaining 

trust in their deployment (Nair et al., 2024). Though not a current widespread concern, it is 

essential to address these challenges proactively as AI becomes more integrated into food 

safety practices. 

One of the key areas for future development is the standardization of AI-enabled detection 

systems. Standardization will help minimize biological, physical, and personnel variations, 

which can affect detection accuracy. For example, biological variations in microbial conditions 

such as different microbial strains or environmental stressors, or physical variations in data 

collection like lighting conditions, microscopy techniques, and agar mediums, as well as 

personnel variations stemming from operator expertise and detection sites, must be accounted 

for to improve consistency and reliability in microbial detection. However, balancing the 

standardization with customization is essential to ensure that methods are both broadly 

applicable and adaptable to specific needs. Similar to the FDA Bacteriological Analytical 

Manual, standardization could involve selecting strains, defining data collection protocols, and 

setting uniform training and prediction standards for wide deployment. At the same time, 

customization should enable users to adapt models to specific food products and microbial 
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challenges, which provides flexibility in handling different environments and contamination 

scenarios.  

Another important future direction is the development of portable AI-based microbial 

detection devices. These devices could be employed directly in the food manufacturing 

facilities, enabling rapid on-site microbial detection. Advances in edge computing will improve 

the portability and deployability of AI models. For spoilage detection, AI models for microbial 

detection can be integrated with product characteristics, such as pH, water activity, and 

packaging conditions, to create a more comprehensive prediction of spoilage risks.  

Further challenges involve data sharing and result explainability. Data sharing across 

industries and research institutions is often limited due to proprietary restrictions, privacy 

concerns, and regulatory barriers, which hinder model development and validation. 

Encouraging open-access microbial image datasets and fostering collaborations among 

academia, regulatory agencies, and industry stakeholders could help accelerate AI adoption. 

Additionally, AI models must provide interpretable results to facilitate regulatory approval and 

user confidence. Current deep learning models often operate as "black boxes", making it 

difficult to understand their decision-making processes. Developing explainable AI 

approaches, such as visualization techniques or feature attribution methods, will be key to 

increasing transparency and acceptance among food safety professionals. Involving scientists, 

policymakers, and other stakeholders in the AI adoption process will be crucial for ensuring 

public acceptance and regulatory alignment. Stakeholder engagement can guide policy 

frameworks for AI-driven microbial detection, addressing ethical concerns, liability issues, and 

best practices for validation and standardization. Collaboration among food safety agencies, 

microbiologists, and AI researchers can also help shape regulatory guidelines that balance 

innovation with safety and reliability. By addressing these challenges, AI-based microbial 

detection can achieve greater acceptance and integration into real-world food safety practices. 
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Table 1. Current AI-based approaches for microbial detection and classification. 
Target 
microbes Sample preparation Imaging approach Algorithm Detection 

time Accuracy Sensitivity Reference 

E. coli Staining with SYBR Green 
after phage-induced lysis 

Fluorescence microscopy 
at 100× magnification 

Faster R-
CNN < 5.5h 80-100% 102CFU/ml Yi et al. (2023) 

E. coli Microcolony formation on 
agar media 

Phase-contrast 
microscopy at 60× 
magnification 

YOLOv4 3h R2 of 
0.995 10 CFU/g Ma et al. 

(2023) 

Bacterial 
pathogens 

Cells on glass slides with 
Gram staining 

Brightfield microscopy at 
63× magnification CNN - 90-100% - Chen et al. 

(2024) 
Bacterial 
pathogens Cells on glass slides Hyperspectral microscopy 3D-

GhostNet - 90-100% - Kang et al. 
(2024) 

Bacterial 
pathogens 

Peptide-conjugated 
particles mixed with 
bacterial cells on 
microfluidic chip 

Smartphone-based 
imaging SVM < 10 min 93.30% 10 CFU/ml Kim et al. 

(2021) 

Candida 
species 

Wet mount of cells using 
saline on glass slides 

Brightfield microscopy at 
100× magnification 

Inception 
V3 - 69.0-

97.0% - 
Shankarnarayan 
& Charlebois 
(2024) 

S. 
cerevisiae Cells on petri dish 

Achromatic microscopy at 
90× magnification with 
fuzzy automation contrast 
enhancement 

YOLOv5 - 94.20% - Huang et al. 
(2023) 
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Fig. 1. Spectral images of various foodborne pathogens. EC: Escherichia coli, LI: Listeria 

monocytogenes, SA: Staphylococcus aureus, and ST: Salmonella Typhimurium. (Kang et al., 2024) 
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Fig. 2. Typical microscopic pictures of Escherichia coli O157:H7, Vibrio parahaemolyticus, 

Staphylococcus aureus, Bacillus cereus, Salmonella typhi¸ and Streptococcus hemolyticus. (Chen et 

al., 2024) 
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Fig. 3. (a) Workflow of YOLO-based bacterial microcolony classification. (b) Representative 
bacterial microcolonies of eight different species. (c) Confusion matrix for microcolony 
classification of Escherichia coli and other common spoilage and pathogenic bacterial species. (Ma 
et al., 2023) 
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Fig. 4. AI model for the detection of Escherichia coli exposed to T7 phages. (A) Example test 
images with their respective observed and predicted bounding boxes; (B) Observed-predicted plots 
for evaluating Escherichia coli quantification performance; (C) 95% prediction thresholds for true 
non-zero counts. (Yi et al., 2023) 
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